Home / Health / Targeting cardiac fibrosis with engineered T cells

Targeting cardiac fibrosis with engineered T cells



  • first

    Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: the fibroblasts wake up. Circ. Res . 118 1021–1040 (2016).

  • 2nd

    Kong, P., Christia, P. & Frangogiannis, N. G. The pathogenesis of cardiac fibrosis. Cell. Mole. Life Sci . 71

    549–574 (2014).

  • 3rd

    Fang, L., Murphy, A. J. & Dart, A. M. A clinical perspective of anti-fibrotic therapies for cardiovascular disease. Front. Pharmacol . 8 186 (2017).

  • 4th

    Ottaviano, F. G. & Yee, K. O. Communication signals between cardiac fibroblasts and cardiac myocytes. J. Cardiovasc. Pharmacol . 57 513–521 (2011).

  • 5th

    Fan, Z. & Guan, J. Antifibrotic therapies to control cardiac fibrosis. Biomater. Res . 20 13 (2016).

  • 6th

    Lam, CSP, Voors, AA, de Boer, RA, Solomon, SD & van Veldhuisen, DJ Heart failure with preserved ejection fraction: from mechanisms for therapies. Eur. Heart J . 39 2780–2792 (2018).

  • 7th

    Kaur, H. et al. Targeted ablation of periostin-expressing activated fibroblasts prevents negative cardiac reconstruction in mice. Circ. Res . 118 1906–1917 (2016).

  • 8th

    Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the damaged heart. Nat Commun . 7 12260 (2016).

  • ninth

    Schmitt, T. M., Ragnarsson, G. B. & Greenberg, P. D. T-cell receptor gene therapy for cancer. Hum. Gene Ther . 20 1240–1248 (2009).

  • 10th

    June, CH, O & 39; Connor, RS, Kawalekar, OU, Ghassemi, S. & Milone, MC CAR T-cell immunotherapy for human cancer. Science 359 1361–1365 (2018).

  • eleventh

    Mullard, A. The FDA Approves First CAR T Therapy. Nat. Rev. Drug Discov . 16 669 (2017).

  • 12th

    Ghobadi, A. Chimeric antigen receptor T-cell therapy for non-Hodgkin lymphoma. Curr. Res. Overs. Med . 66 43–49 (2018).

  • thirteenth

    June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med . 379 64–73 (2018).

  • fourteenth

    Lim, W. A. ​​& June, C. H. The principles of the construction of immune cells to treat cancer. Cell 168 724–740 (2017).

  • 15th

    Sandhu, U. et al. Strict control of transgene expression in a mouse model for sensitive biological applications based on RMCE-compatible ES cells. Nucleic Acids Res . 39 e1 (2011).

  • 16th

    Cebula, M. et al. An inducible transgenic mouse model for immune-mediated hepatitis showing clearance of antigen expressing hepatocytes with CD8 + T cells. PLoS ONE 8 e68720 (2013).

  • 17th

    Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76 17–27 (1994).

  • 18th

    Clarke, S. R. et al. Characterization of the ovalbumin-specific TCR transgenic line OT-I: MHC elements for positive and negative selection. Immunol. Cell Biol . 78 110–117 (2000).

  • 19th

    Ivey, M. J. & Tallquist, M. D. Define cardiac fibroblast. Circ. J . 80 2269–2276 (2016).

  • 20th

    Tallquist, M. D. & Molkentin, J. D. Redefines the identity of cardiac fibroblasts. Nat. Pastor Cardiol . 14 484–491 (2017).

  • 21st

    Scanlan, M. J. et al. Molecular cloning of fibroblast activation protein α, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancer. Proc. Natl Acad. Sci. United States 91 5657-5661 (1994).

  • 22nd

    Rettig, W. J. et al. Cell surface glycoproteins from human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc. Natl Acad. Sci. United States 85 3110–3114 (1988).

  • 23rd

    Niedermeyer, J. et al. Fibroblast activation protein from mice: molecular cloning, alternative splicing and expression in the reactive stroma of epithelial cancer. Int. J. Cancer 71 383–389 (1997).

  • 24th

    Tillmanns, J. et al. Fibroblast activation protein α expression identifies activated fibroblasts after myocardial infarction. J. Mol. Cell. Cardiol . 87 194–203 (2015).

  • 25th

    Wang, L. C. et al. Targeting of fibroblast activation protein in the tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and increase host immunity without severe toxicity. Cancer Immunol. Res . 2 154–166 (2014).

  • 26th

    Kakarla, S. et al. Antitumor effects of chimeric receptor engineered human T cells directed against the tumor stroma. Mol. Ther . 21 1611–1620 (2013).

  • 27th

    Lo, A. et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res . 75 2800–2810 (2015).

  • 28th

    Schuberth, P. C. et al. Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific directed T cells. J. Övers. Med . 11 187 (2013).

  • 29th

    Petrausch, U. et al. Targeted T cells for the treatment of fibroblast activation protein (FAP) -positive malignant pleural mesothelioma (FAPME-1). BMC Cancer 12 615 (2012).

  • 30 °.

    Govindaraju, P., Todd, L., Shetye, S., Monslow, J. & Puré, E. CD44-dependent inflammation, fibrogenesis, and collagenolysis regulate extracellular matrix remodeling and tensile strength during cutaneous wound healing. Matrix Biol . 75–76 314–330 (2019).

  • 31st

    Croft, A. P. et al. Distinct fibroblast subgroups cause inflammation and damage to arthritis. Nature 570 246–251 (2019).

  • 32nd

    Fischbach, M. A., Bluestone, J. A. & Lim, W. A. ​​Cell-based therapeutics: the next pillar of medicine. Sci. Overs. Med . 5 179ps7 (2013).

  • 33rd

    Tran, E. et al. Immune targeting of fibroblast activation protein triggers the recognition of multipotent bone marrow stromal cells and cachexia. J. Exp. Med . 210 1125–1135 (2013).

  • 34th

    Cameron, B. J. et al. Identification of a titin-derived HLA-Al-presented peptide as a cross-reactive target for engineered MAGE A3-targeted T cells. Sci. Overs. Med . 5 197ra103 (2013).

  • 35th

    Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122 863–871 (2013).

  • 36th

    Sun, S., Hao, H., Yang, G., Zhang, Y. & Fu, Y. Immunotherapy with CAR-modified T-cells: toxicity and recovery strategies. J. Immunol. Res . 2018 2386187 (2018).

  • 37th

    Ochel, A. et al. Effective intrahepatic CD8 + Immune response of T cells is induced by low but not high antigen-expressing hepatocytes. Cell. Mole. Immunol . 13 805–815 (2016).

  • 38th

    Mourkioti, F. et al. Role of telomere dysfunction in heart failure in Duchenne muscular dystrophy. Nat. Cell Biol . 15 895–904 (2013).

  • 39th

    Newick, K. et al. Enhancing CAR T-cell trafficking and antitumor efficacy by blocking protein kinase A localization. Cancer Immunol. Res . 4 541–551 (2016).

  • 40th

    Dipla, K., Mattiello, JA, Jeevanandam, V., Houser, SR & Margulies, KB Myocyte recovery after mechanical circulation support in end-stage heart failure people. Circulation 97 2316–2322 (1998).

  • 41st

    Chen, C. Y. et al. Suppression of detyrosinated microtubules improves cardiac dysfunction in cardiac function. Nat Med . 24 1225–1233 (2018).

  • 42nd

    Dobin, A. et al. STAR: ultra-fast universal RNA-seq aligner. Bioinformatics 29 15–21 (2013).

  • 43rd

    Law, CW, Chen, Y., Shi, W. & Smyth, GK voom: Precision weights unlock linear model analysis tools for RNA-seq read count. Genome Biol . 15 R29 (2014).

  • 44th

    Love, M. I., Huber, W. & Anders, S. Moderate estimation of fold change and spread for RNA-seq data with DESeq2. Genome Biol . 15 550 (2014).

  • 45 °.

    Benjamini, Y. & Hochberg, Y. Check the false detection rate: a practical and powerful strategy for multiple tests. J. R. Stat. Soc. B 57 289–300 (1995).


  • Source link